Cocaethylene affects human microvascular endothelial cell p38 mitogen-activated protein kinase activation and nuclear factor-kappaB DNA-binding activity.
نویسندگان
چکیده
BACKGROUND Cocaethylene (CE) is known to increase the permeability of human microvascular endothelial cell monolayers. The molecular mechanism underlying this increase may involve calcium-modulated signaling pathways such as the p38 mitogen-activated protein kinase (p38 MAPK) and the nuclear factor-kappaB (NF-kappaB) family of transcription factors. The hypothesis of this study was that CE-mediated endothelial permeability change may be mediated by the p38 MAPK and consequently NF-kappaB dimers. METHODS We used sandwich ELISA to detect phosphorylated p38 MAPK in the cell line human microvascular endothelial cell 1 (HMEC-1) after treatment with 1 mmol/L CE. We used electrophoretic mobility shift assay to detect changes in NF-kappaB dimers present in HMEC-1 and their DNA-binding activity after treatment with CE. Lipopolysaccharide (LPS) from Salmonella typhosa was used as a positive control for all experiments. RESULTS Treatment with CE and LPS had similar effects on HMEC-1 p38 MAPK phosphorylation and NF-kappaB DNA-binding activity. Both treatments increased the phosphorylation of p38 MAPK, consistent with activation of proinflammatory cell signaling. Treatment of HMEC-1 with CE decreased DNA binding of both the RelA/p50 and p50/p50 dimers of the NF-kappaB transcription factor family, whereas treatment with LPS decreased and then increased the DNA binding of these dimers. CONCLUSION In addition to increasing HMEC-1 monolayer permeability, CE also alters transcription factor and kinase activity related to inflammation. Thus, CE causes endothelial activation that can elicit a prolonged and organized cellular response, rather than being directly toxic to endothelial cells.
منابع مشابه
Cocaethylene Affects Human Microvascular Endothelial Cell p38 Mitogen-Activated Protein Kinase Activation and Nuclear Factor- B DNA-Binding Activity
Background: Cocaethylene (CE) is known to increase the permeability of human microvascular endothelial cell monolayers. The molecular mechanism underlying this increase may involve calcium-modulated signaling pathways such as the p38 mitogen-activated protein kinase (p38 MAPK) and the nuclear factorB (NFB) family of transcription factors. The hypothesis of this study was that CE-mediated endoth...
متن کاملVascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF-kappaB: inhibitory role of curcumin.
Endothelial activation and surface expression of cell adhesion molecules (CAMs) is critical for binding and recruitment of circulating leukocytes in tissues during the inflammatory response. Endothelial CAM expression plays a critical role in the intestinal microvasculature in inflammatory bowel disease (IBD), as blockade of leukocyte alpha4-integrin binding by gut endothelial CAM ligands has t...
متن کاملVitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase.
The transcription factor NF-kappaB is a central mediator of altered gene expression during inflammation, and is implicated in a number of pathologies, including cancer, atherosclerosis, and viral infection. We report in this study that vitamin C inhibits the activation of NF-kappaB by multiple stimuli, including IL-1 and TNF in the endothelial cell line ECV304 and in primary HUVECs. The inducti...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملVanadium-induced kappaB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase.
Activation of nuclear factor (NF)-kappaB and subsequent proinflammatory gene expression in human airway epithelial cells can be evoked by oxidative stress. In this study we examined signal transduction pathways activated by vanadyl sulfate (V(IV))-induced oxidative stress in normal human bronchial epithelial cells. Both nuclear translocation of NF-kappaB and enhanced kappaB-dependent transcript...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 52 10 شماره
صفحات -
تاریخ انتشار 2006